首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

分析 >> 数学分析 >> 极限
Questions in category: 极限 (Limit).

设 $\lim\limits_{n\rightarrow\infty}(a_{n+1}-a_n)=A$, 则 $\lim\limits_{n\rightarrow\infty}\frac{a_n}{n}=A$.

Posted by haifeng on 2024-09-07 10:35:21 last update 2024-09-07 10:51:03 | Answers (1)


设 $\lim\limits_{n\rightarrow\infty}(a_{n+1}-a_n)=A$, 则 $\lim\limits_{n\rightarrow\infty}\frac{a_n}{n}=A$.

 


[Hint] 看到 $a_{n+1}-a_n$ 就要联想到 $\frac{a_{n+1}-a_n}{(n+1)-n}$, 进而 Stolz 公式. 当然这里我们并不需要应用 Stolz 公式, 只需引理3344即可.

 

[Remark] 下面的证法不行. 

由条件得 $\forall\ \varepsilon > 0$, $\exists N$, 当 $n > N$ 时, 总有

\[A-\varepsilon < a_{n+1}-a_n < A+\varepsilon .\]

于是, 有

\[
\begin{cases}
A-\varepsilon < &a_{n+1}-a_n < A+\varepsilon,\\
A-\varepsilon < &a_{n+2}-a_{n+1} < A+\varepsilon,\\
&\vdots\\
A-\varepsilon < &a_{2n}-a_{2n-1} < A+\varepsilon .
\end{cases}
\]

相加得

\[
n(A-\varepsilon) < a_{2n}-a_n < n(A+\varepsilon),
\]

从而推出

\[
A-\varepsilon < \frac{a_{2n}-a_n}{n} < A+\varepsilon .
\]

但这无法证明 $\lim\limits_{n\rightarrow\infty}\frac{a_n}{n}=A$, 除非知道数列 $\{\frac{a_n}{n}\}$ 是收敛的.